Protecting Privacy through Distributed Computation in Multi-agent Decision Making
نویسندگان
چکیده
As large-scale theft of data from corporate servers is becoming increasingly common, it becomes interesting to examine alternatives to the paradigm of centralizing sensitive data into large databases. Instead, one could use cryptography and distributed computation so that sensitive data can be supplied and processed in encrypted form, and only the final result is made known. In this paper, we examine how such a paradigm can be used to implement constraint satisfaction, a technique that can solve a broad class of AI problems such as resource allocation, planning, scheduling, and diagnosis. Most previous work on privacy in constraint satisfaction only attempted to protect specific types of information, in particular the feasibility of particular combinations of decisions. We formalize and extend these restricted notions of privacy by introducing four types of private information, including the feasibility of decisions and the final decisions made, but also the identities of the participants and the topology of the problem. We present distributed algorithms that allow computing solutions to constraint satisfaction problems while maintaining these four types of privacy. We formally prove the privacy properties of these algorithms, and show experiments that compare their respective performance on benchmark problems.
منابع مشابه
Improving Privacy in Distributed Constraint Optimization
My research interests are focused on designing more trustworthy intelligent systems, systems that act not only autonomously, but also with integrity, so that they can be trusted with important data and decisions. Computers increasingly act as autonomous agents entrusted with critical tasks, sensitive data, and interactions with other humans and machines in large, multi-agent systems. At the sam...
متن کاملMulti-objective optimization based privacy preserving distributed data mining in Peer-to-Peer networks
This paper proposes a scalable, local privacy-preserving algorithm for distributed peer-to-peer (P2P) data aggregation useful for many advanced data mining/analysis tasks such as average/sum computation, decision tree induction, feature selection, and more. Unlike most multi-party privacy-preserving data mining algorithms, this approach works in an asynchronous manner through local interactions...
متن کاملDual Decomposition-Based Privacy-Preserving Multi-Horizon Utility-Community Decision Making Paradigms
Two types of privacy-preserving decision making paradigms for utility-community interactions for multi-horizon operation are examined in this paper. In both designs, communities with renewable energy sources, distributed generators, and energy storage systems minimize their costs with limited information exchange with the utility. The utility makes decision based on the information provided fro...
متن کاملReinforcement Learning for Decentralized Planning Under Uncertainty (Doctoral Consortium)
Decentralized partially-observable Markov decision processes (Dec-POMDPs) are a powerful tool for modeling multi-agent planning and decision-making under uncertainty. Prevalent Dec-POMDP solution techniques require centralized computation given full knowledge of the underlying model. But in real world scenarios, model parameters may not be known a priori, or may be difficult to specify. We prop...
متن کاملA Self-organized Multi Agent Decision Making System Based on Fuzzy Probabilities: The Case of Aphasia Diagnosis
Aphasia diagnosis is a challenging medical diagnostic task due to the linguistic uncertainty and vagueness, large number of measurements with imprecision, inconsistencies in the definition of Aphasic syndromes, natural diversity and subjectivity in test objects as well as in options of experts who diagnose the disease. In this paper we present a new self-organized multi agent system that diagno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Artif. Intell. Res.
دوره 47 شماره
صفحات -
تاریخ انتشار 2013